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Fig 4: Influence of (A) minimum r2 threshold and (B) lower MAF threshold on imputation accuracy and 
coverage(r2>0.5 and r2>0.8) within populations from the Americas with an allocation of 1M sites. 

 
 

Tagging potential differs between 
populations 

Efficient tag SNP selection is an opportunity to 
boost power in downstream analyses. In our study, 
African and out-of-Africa populations exhibited distinct 
genetic architectures, which resulted in different 
performance trends. Even when cross-population 
performance was prioritized, it did not guarantee equal 
representation of all population groups within the tag 
SNP set. To determine the contribution of each 
population, we focused on chromosome 9 (42,215 
tags), equivalent to one million sites genome-wide, 
selected with our novel cross-population prioritization 
scheme. This tag SNP allocation resulted in including 
all tags that were informative in at least 3 to all 6 
populations in the scaffold. Out of all tags for 
chromosome 9, 17.96% were informative in all 6 
populations. (S3 Table) No tags were included that were 
informative in only one or two populations. Of tags that 
were informative in 5 out of the 6 super-populations, 
only 54% were in LD with any target sites within EAS 
populations, while 93% were informative in AAC 
populations. (Fig 5A) This trend is consistent with 
cross-population tags tending to be less informative in 
EAS populations compared to the other populations. 
When tags are informative in 3 out of 6 groups, only 
18% were informative in EAS, while 75% were 
informative in AAC. Tags informative in only 2 of the 6 
groups were likely informative in AAC and AFR, the 
African descent populations, while very few of them 
were informative for non-African descent groups, 
consistent with capturing differential LD patterns in 
African populations.(Henn et al. 2011) When tags are 
stratified by MAF (0.5-1%, 1-5%, and >5%), these 
trends are exaggerated in the low frequency and rare 
MAF bins.  (S7 Fig) As expected, the rare variation (0.5-
1% MAF) was highly population-specific with no sites in 
this frequency bin being informative across all 
populations, or even 5 out of the 6 populations. (Gravel 

et al. 2011) For low frequency variation (1-5%), tags 
were the least informative within EAS, with only 36% of 
the tags informative in 5 out of 6 populations. 

Conditional performance, or the ability of a tag 
which is informative in the index population also being 
informative in an additional population, was also 
examined and found to be consistent with known 
population histories. Of tags that are informative within 
AFR, 94% were informative within AAC, while only 38% 
were informative within EAS. (Fig 5B) However, among 
tags that were informative within EAS, 81% were 
informative within African populations. Once again, the 
stratified analyses show exaggerated trends for the low 
frequency and rare MAF bins. (S8 Fig) For the rare 
variation (0.5-1%), only a very small percentage (<10%) 
of tags are informative in other populations (AMR, EAS, 
EUR, SAS) if they were informative within African-
descent populations (AFR and AAC). The high level of 
sharing between AFR and AAC is expected due to the 
high proportion of African ancestry within African-
American and Afro-Caribbean populations. Of tags 
informative within EUR, 78% are also informative within 
AMR, largely due to the high proportion of European 
ancestry within some Hispanic/Latino 
populations.(Moreno-Estrada et al. 2013; Gravel et al. 
2013; Moreno-Estrada et al. 2014)  

The tags were also not equally informative in 
each population when it comes to the number of sites 
they tag with r2>0.5. For chromosome 9, it would take 
81,416 tags to capture all possible tag-able variation 
with an r2>0.5 within AFR populations, while it would 
take only 28,473 tags within EAS populations to 
saturate coverage. However, each tag within the AFR 
populations captures on average 7.17 other sites, 
whereas for EAS populations, each tag captures on 
average 10.27 other SNPs. When restricting the design 
to a million tag SNP scaffold, each tag captures on 
average 16.16 other SNPs within EAS populations and 
12.16 other SNPs in AFR populations. (Table 1) This 
reflects the different underlying genetic architecture of 
these different groups. 
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Population 
All Possible Tags One Million Tag Scaffold 

Number of Tags Sites Captured per 
Tag Number of Tags Sites Captured per 

Tag 
AAC 74,255 8.04 36,336 12.97 

AFR 81,416 7.17 34,548 12.16 

AMR 43,065 9.40 28,691 12.80 

EAS 28,473 10.27 16,457 16.16 
EUR 35,027 9.48 22,111 13.63 

SAS 37,644 9.28 23,480 13.33 
Table 1: Performance per tag SNP to capture all variation possible with r2>0.8 on chromosome 9, as well as 
within a million site genome-wide scaffold allocation through cross-population prioritization. 
 

 

Fig 5: Tag SNPs informativeness across population. (A) Proportion of sites informative (r2>0.5, MAF>0.01, 1M site 
scaffold) across a number of populations, with lines corresponding to the index population. For example, for sites that 
are informative (r2>0.5 with any untyped SNP in genome) in five out of the six populations, only slightly more than half 
are informative in East Asian populations while greater than 90% are informative in African populations. (B) Proportion 
of sites shared across populations, conditional on index population. For example, for sites informative in African 
populations, less than half are informative in East Asian, European, and South Asian populations. 
 
 

Limits of tagging and imputation 
Not all of the human genome can be captured 

through pairwise tagging given existing reference 
panels. For each super population, we filtered for sites 
that were polymorphic (MAF>0.5%) and had no 
pairwise correlation (r2>0.2) with any other site within 
one megabase. The number of these “lone sites” 
without any pairwise correlation was dependent upon 
population. AAC had the greatest number of lone sites, 
but that is likely due to the significantly decreased 
sample size compared to the other populations. (Table 
2) The lowest number of lone sites was found within 
AMR. Although these sites have no notable pairwise 
correlation with any other site in the human genome, 
haplotypes may be informative and allow the recovery 
of information for imputation. We again assumed a one 
million genome-wide tag SNP scaffold allocation with 
minimum MAF of 1% and minimum r2 threshold of 0.5 
and imputed to the entire 1000 Genomes reference 

panel. As expected, imputation accuracy and ability to 
recover information was population-specific. The 
imputation accuracy within AAC was an outlier when 
compared to other populations, with 80.72% of lone 
sites being imputed with at least the accuracy of 
racc2≥0.5 and over 50% of sites being imputed with even 
higher accuracy (racc2≥0.8). Many of these lone sites 
within AAC were captured with pairwise and haplotype 
LD within other populations, primarily AFR and to a 
lesser extent EUR. While there were likely insufficient 
allele counts for accurate correlation estimation within 
AAC due to the small sample size, this information could 
be recovered using a global reference panel. The 
number of unrecoverable “dark sites”, which had no 
pairwise correlation and were not recoverable with 
imputation using haplotype information, was the largest 
in EAS and is consistent with known demography and 
population history yielding an excess of highly rare 
variation compared to other populations.(Gravel et al. 
2011) 
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Table 2: Lone sites by super population and their imputation accuracy for a 1M site scaffold. 

Pairwise coverage versus imputation 
accuracy 

When evaluating the performance of a GWAS 
scaffold, there are numerous factors to take into 
consideration. These include the number of sites you 
have allocated to tag SNPs and what your priorities are 
for balanced representation. To a lesser extent, the 
benefits and pitfalls of prioritizing low-frequency 
variants must be weighed. However, we have 
demonstrated that the influence of these factors is 
highly dependent on how performance is measured. 
The notion of genomic “coverage” has historically been 
estimated using pairwise correlations, and therefore this 
term will be used to denote the proportion of 
polymorphic sites that are in pairwise LD (r2 threshold) 
with at least one tag SNP. We calculated coverage 
separately per super population at an r2 threshold of 0.5 
and 0.8 within minor allele frequency bins identical to 
the imputation accuracy estimation analyses, assuming 
a genome-wide tag SNP set of 500,000 and 1,000,000. 
(Table 3) For a tag SNP set of one million sites, 
coverage was lowest in AFR with an overall average of 
59.15% for all sites with MAF>0.5% and r2>0.5. (S9 Fig) 
When the r2 threshold is raised to 0.8, the proportion of 
sites in linkage disequilibrium with at least one tag SNP 
lowers to 28%. (Fig 6) The highest coverage was found 
in populations from the Americas (AMR) and East Asia 
(EAS). For a lower r2 threshold of 0.5, 79.9% of AMR 
sites with MAF>0.5% were covered. When using the 
higher r2 threshold of 0.8, East Asian populations had 
the highest coverage with 63.08% of sites in LD with at 

least one tag SNP. This difference is even more marked 
when looking at a smaller tag SNP set of 500,000 sites. 
(S10 Fig, S11 Fig) African populations now have an 
overall coverage of 33.17% with r2>0.5 and 14.10% with 
r2>0.8. East Asian populations have the highest 
coverage with 73.16% of sites covered with r2>0.5 and 
55.09% with r2>0.8.  

These trends are in striking contrast to those we 
observed in imputation accuracy. When comparing a 
tag SNP set of 1 million, pairwise LD coverage is the 
lowest in populations of African descent (59% with 
r2>0.5) yet imputation's ability to recover un-typed sites 
is on average high and consistent with other populations 
(imputation accuracy of 89.62%) among SNPs with a 
minor allele frequency above 0.5%. This contrast is also 
found in East Asian populations, which had one of the 
highest proportion of polymorphic SNPs with r2>0.5 for 
coverage (76.95%), but the lowest imputation accuracy 
(86.28%). (Table 3) When sites are stratified by minor 
allele frequency bins, the differences in trends are even 
more striking. (Fig 6, S9 Fig) For example, within the 
lowest frequency bin (0.5% to 1%) for admixed 
populations of African-descent, the coverage of sites for 
a set of 500,000 tag SNPs with r2>0.8 falls below 10%, 
however the imputation accuracy remains relatively 
high at 77.82%. These trends are consistent and more 
dramatic when evaluated within a tag SNP set of 
500,000 sites. (S10 Fig, S11 Fig) These observations 
reinforce the necessity of examining imputation 
accuracy, instead of pairwise coverage, when 
evaluating the performance of tag SNPs. 

 
 

Super population 

Total Number 
of 

Polymorphic 
Sites 

Scaffold of 1,000,000 tags Scaffold of 500,000 tags 
Coverage Imputation 

Accuracy 
Coverage Imputation 

Accuracy r2>0.5 r2>0.8 r2>0.5 r2>0.8 

AAC 780896 63.64% 30.27% 90.59% 34.03% 14.07% 84.85% 
AFR 777207 59.15% 28.05% 89.62% 33.17% 14.10% 83.32% 
AMR 503804 79.90% 53.60% 92.77% 61.00% 37.02% 90.09% 
EAS 367189 76.95% 63.08% 86.28% 73.16% 55.09% 84.16% 
EUR 414184 78.77% 62.65% 91.02% 72.87% 52.86% 88.90% 
SAS 455573 74.84% 56.97% 88.09% 67.28% 45.91% 85.46% 

Table 3: Coverage of 1 million and 500,000 tag SNP set by super population for all polymorphic sites on 
chromosome 9 with MAF>0.5%.

Population Number of 
Individuals 

Number of 
Lone Sites 

Imputation Accuracy Quality Number Unrecoverable with 
r2acc≥0.2 (%) r2acc≥0.2 r2acc≥0.5 r2acc≥0.8 

AAC 156 7,509 90.79% 80.72% 51.72% 691 (9.2%) 
AFR 495 4,497 63.29% 38.73% 7.03% 1,651 (36.7%) 
AMR 341 2,701 48.98% 25.88% 3.78% 1,378 (51.02%) 
EAS 503 4,947 44.37% 12.41% 2.14% 2,752 (55.63%) 
EUR 501 3,881 51.07% 23.22% 3.74% 1,899 (48.93%) 
SAS 477 4,293 51.01% 18.77% 2.26% 2,103 (48.99%) 
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Fig 6: Coverage (dashed lines) versus Imputation Accuracy (solid lines), assuming a genome-wide scaffold 
size of one million tags. Coverage is shown with an r2>0.8. While pairwise tagging values are low, particularly in 
African-descent populations, multi-marker imputation accuracy remains high across groups.

Discussion 
As genomic researchers shift their focus to rare 

variant association in large and increasingly 
heterogeneous populations, it is important to design 
arrays with this ultimate goal in mind. There are 
currently two accepted methods of evaluating the 
performance of a tag SNPs: pairwise LD “coverage” and 
imputation accuracy. Coverage has historically been 
used as a term to denote the proportion of polymorphic 
sites that are in linkage disequilibrium with at least one 
tag marker above a certain r2 threshold. (Barrett and 
Cardon 2006; Pe’er et al. 2006; Li et al. 2008; Bhangale 
et al. 2008) Genotyping arrays are typically compared 
using this score averaged across the genome. 
However, as we and others have demonstrated, 
restricting performance assessment to this definition of 
pairwise coverage is limited by removing multi-marker 
information. (Nelson et al. 2013; Martin et al. 2014) 
Evaluating imputation accuracy, particularly via leave-
one-out cross validation, is highly computationally 
intensive, but provides a better assessment of how well 
untyped variation can be recaptured and a more 
realistic depiction of array performance than pairwise 
coverage. Imputation accuracy is also a more useful 
statistic in a practical sense, especially with the 
development of deeper and more diverse reference 
panels, (Prüfer et al. 2014; Gurdasani et al. 2015; 
Sudlow et al. 2015; Auton et al. 2015; McCarthy, Das, 
et al. 2016) as performing GWAS with imputed variants 
is now the expectation. Emerging evidence suggests 

that rare variants (MAF<1%) that are poorly tagged by 
an individual tag SNP will be accessible via imputation, 
due to added haplotype information, particularly as 
sample sizes move beyond the thousands into the tens 
or hundreds of thousands. (Nelson et al. 2013; 
Fuchsberger et al. 2014) 

Previous tagging strategies have 
predominantly focused on optimizing performance in a 
single population. In prioritizing potential tags by their 
ability to provide linkage disequilibrium information 
across multiple populations, we were able to 
demonstrate that cross population tag SNP selection 
outperforms single population selection. This boost in 
imputation accuracy exists across all populations and 
frequency bins.  We simulated tag SNP sets for a range 
of sizes (250,000-2 million), as well as for several 
minimum minor allele frequencies (0.5%, 1%, 5%) and 
minimum r2 thresholds (0.2, 0.5, 0.8). For investigators 
with limited real estate or budget for tag SNP selection, 
we found that the biggest improvement in imputation 
accuracy provided with our cross population approach 
was with the smaller array sizes (250,000) when 
compared to a naïve design or biased population 
ascertainment. As expected, the influence of MAF and 
r2 threshold was population-specific. For African-
descent populations, including tag SNPs with a low 
threshold of r2 ≥ 0.2 resulted in lower imputation 
accuracy across all bins, while in other populations 
(EUR, AMR, SAS) tags at r2 ≥ 0.2 led to increased 
imputation accuracy for low frequency variants to the 
detriment of common variation. This is due to the lower 
LD patterns overall in African haplotypes, requiring 
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denser coverage. The best balance was found with a 
moderate r2 threshold of ≥ 0.5 for those seeking to 
perform well across all populations. This compromise is 
also present in choosing the lower MAF threshold. 
Limiting tag SNP selection to common variants with 
MAF ≥ 5% produced the highest imputation accuracy 
across all frequency bins within African-descent 
populations. However, this threshold decreased 
imputation accuracy for low frequency and rare variants 
in all other populations. Therefore, the best balance is 
once again found in the moderate value of MAF ≥ 1%. 
Investigators will need to take their priorities into 
account when selecting the correct thresholds for their 
populations and if they have a specific target frequency 
bin. We chose to prioritize all populations equally to 
provide a design of broad global utility, which was 
adopted to construct the GWAS scaffold for Illumina 
Infinium Multi-Ethnic Global Arrays (Illumina) and 
Global Screening Arrays (Illumina). If a study is 
comprised of mostly one ancestral group, then the 
investigators should choose the appropriate thresholds 
tailored for their study. 

Consistent with demographic history, the 
potential to capture variation with a limited allocation is 
unequal between the different populations in the 1000 
Genomes Project. The naïve tagging approach will bias 
tag SNP selection to be primarily informative within 
African-descent populations. The absolute number of 
polymorphic sites within African populations is much 
larger than other populations, and while LD tends to be 
lower than in other populations, the high number of 
potential tags and pairwise correlations overwhelms the 
other populations’ contributions without controlling for 
this unique pattern. By prioritizing potential tags that 
provide information across all populations, the 
population-level contributions are more balanced 
without detriment to the African-descent groups (Fig 4). 
The absolute number of rare variants (MAF < 1%) is 
larger in African populations, but the frequency 
spectrum is more skewed towards rare variants in 
populations with recent bottlenecks and exponential 
population expansion, such as in East Asians. 
Contrasting these two populations (AFR and EAS), East 
Asian populations require fewer sites to saturate 
coverage, with each potential tag being in LD with more 
sites. However, far more polymorphic sites across the 
genome cannot be captured with either pairwise linkage 
disequilibrium or through haplotype information with 
imputation accuracy within these populations due to a 
dearth of LD information. This is amplified by the lack of 
comprehensive reference panels for many populations, 
such as East and South Asia. As reference panels are 
expanded, more variation will be captured to inform tag 
SNP selection and imputation accuracy, and we expect 
imputation accuracy to improve for all populations and 
across the frequency spectrum. (Fuchsberger et al. 
2014)  

The power to identify relevant disease loci is 
inherently constrained by sample size and genome 
coverage. It is important to note that algorithmic 
development both on association testing and imputation 
methods have been a productive avenue of research 
since GWAS began, with new methods providing 
incremental improvements in statistical power. Here, we 

demonstrate a complementary strategy to improve 
statistical power by designing arrays optimized for 
imputation accuracy. Also, as cosmopolitan biobanks 
and large-scale multi-ethnic epidemiological studies 
become more commonplace, it will be important to have 
available platforms with built in trans-ethnic utility. As 
global reference panels become deeper and more 
diverse, more variation will be available for array design. 
The unified framework presented here will enable 
investigators to make informed decisions in the 
development and selection of GWAS scaffolds for future 
large-scale multi-ethnic studies. This increased 
representation of multi-ethnic genetic variation will 
promote the investigation of the genetics of complex 
disease and the improvement of global health in the 
next phase of GWAS.  
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